用户名: 密码: 验证码:
Peptide-Passivated Lead Halide Perovskite Nanocrystals Based on Synergistic Effect between Amino and Carboxylic Functional Groups
详细信息    查看全文
文摘
A new strategy has been developed using peptides with amino and carboxylic functional groups as passivating ligands to produce methyl ammonium lead bromide (CH3NH3PbBr3) perovskite nanocrystals (PNCs) with excellent optical properties. The well-passivated PNCs can only be obtained when both amino and carboxylic groups are involved, and this is attributed to the protonation reaction between NH2 and COOH that is essential for successful passivation of the PNCs. To better understand this synergistic effect, peptides with different lengths have been studied and compared. Due to the polar nature of peptides, peptide-passivated PNCs (denoted as PNCspeptide) aggregate and precipitate from nonpolar toluene solvent, resulting in a high product yield (≈44%). Furthermore, the size of PNCspeptide can be varied from ≈3.9 to 8.6 nm by adjusting the concentration of the peptide, resulting in tunable optical properties due to the quantum confinement effect. In addition, CsPbBr3 PNCs are also synthesized with peptides as capping ligands, further demonstrating the generality and versatility of this strategy, which is important for generating high quality PNCs for photonics applications including light-emitting diodes, optical sensing, and imaging.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700