用户名: 密码: 验证码:
Development of ZMYM2-FGFR1 driven AML in human CD34+ cells in immunocompromised mice
详细信息    查看全文
文摘
Acute myelogenous leukemia (AML) has an overall poor survival rate and shows considerable molecular heterogeneity in its etiology. In the WHO classification there are >50 cytogenetic subgroups of AML, many showing highly specific chromosome translocations that lead to constitutive activation of individual kinases. In a rare stem cell leukemia/lymphoma syndrome, translocations involving 8p11 lead to constitutive activation of the fibroblast growth factor receptor 1 (FGFR1) kinase. This disorder shows myeloproliferative disease with almost invariable progresses to AML and conventional therapeutic strategies are largely unsuccessful. Because of the rare nature of this syndrome, models that faithfully recapitulate the human disease are needed to evaluate therapeutic strategies. The t(8;13)(p11;q12) chromosome translocation is most common rearrangement seen in this syndrome and creates a ZMYM2-FGFR1 chimeric kinase. To understand more about the molecular etiology of AML induced by this particular rearrangement, we have created a model human CD34+ cells transplanted into immunocompromized mice which develop myeloproliferative disease that progresses to AML with a long (>12 months) latency period. As in humans, these mice show hepatospenomegaly, hypercellular bone marrow and a CD45 + CD34 + CD13+ immunophenotype. Molecular studies demonstrate upregulation of genes such as KLF4 and FLT3 that promote stemness, and overexpression of MYC, which is associated with suppression of myeloid cell differentiation. This murine model, therefore, provides an opportunity to develop therapeutic strategies against the most common subtype within these FGFR1 driven neoplasms and study the molecular etiology in more depth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700