用户名: 密码: 验证码:
Valproic Acid Enhances iPSC Induction From Human Bone Marrow-Derived Cells Through the Suppression of Reprogramming-Induced Senescence
详细信息    查看全文
文摘
Reprogramming of human somatic cells into pluripotent cells (iPSCs) by defined transcription factors is an extremely inefficient process. Treatment with the histone deacetylase inhibitor valproic acid (VPA) during reprogramming can improve the induction of iPSCs. To examine the specific mechanism underlying the role of VPA in reprogramming, we transfected human bone marrow-derived cells (HSC-J2 and HSC-L1) with lentiviruses carrying defined factors (OCT4, SOX2, KLF4, and c-MYC, OSKM) in the presence of VPA. We found that, OSKM lentiviruses caused significant senescence in transfected cells. Administration of VPA, however, significantly suppressed this reprogramming-induced stress. Notably, VPA treatment improved cell proliferation in the early stages of reprogramming, and this was related to the down-regulation of the activated p16/p21 pathway. In addition, VPA also released the G2/M phase blockade in lentivirus-transfected cells. This study demonstrates a new mechanistic role of the histone deacetylase inhibitor in enhancing the induction of pluripotency. J. Cell. Physiol. 231: 1719–1727, 2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700