用户名: 密码: 验证码:
Electrospun Photocrosslinkable Hydrogel Fibrous Scaffolds for Rapid In Vivo Vascularized Skin Flap Regeneration
详细信息    查看全文
文摘
Distal necrosis of random skin flap is always clinical problematic in plastic surgery. The development of 3D functional vascular networks is fundamental for the survival of a local random skin flap. Herein, an effective technique on constructing 3D fibrous scaffolds for accelerated vascularization is demonstrated using a photocrosslinkable natural hydrogel based on gelatin methacryloyl (GelMA) by electrospinning. It is found that the ultraviolet (UV) photocrosslinkable gelatin electrospun hydrogel fibrous membranes exhibit soft adjustable mechanical properties and controllable degradation properties. Furthermore, it is observed that the optimized hydrogel scaffolds can support endothelial cells and dermal fibroblasts adhesion, proliferation, and migration into the scaffolds, which facilitates vascularization. Importantly, a rapid formation of tubes is observed after 3 d seeding of endothelial cells. After GelMA fibrous scaffold implantation below the skin flap in a rat model, it is found that the flap survival rate is higher than the control group, and there is more microvascular formation, which is potentially beneficial for the flap tissue vascularization. These data suggest that GelMA hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700