用户名: 密码: 验证码:
Flat Helical Nanosieves
详细信息    查看全文
文摘
Compact and miniaturized devices with flexible functionalities are always highly demanded in optical integrated systems. Plasmonic nanosieve has been successfully harnessed as an ultrathin flat platform for complex manipulation of light, including holography, vortex generation, and nonlinear processes. Compared with most of the reported single-functional devices, multifunctional nanosieves might find more complex and novel applications across nanophotonics, optics, and nanotechnology. Here, a promising roadmap for nanosieve-based helical devices is experimentally demonstrated, which achieves full manipulations of optical vortices, including its generation, hybridization, spatial multiplexing, focusing and nondiffraction propagation, etc., by controlling the geometric phase of spin light via over 121 thousands of spatially rotated nanosieves. Thanks to such spin-conversion nanosieve helical elements, it is no longer necessary to employ the conventional two-beam interferometric measurement to characterize optical vortices, while the interference can be realized natively without changing any parts of the current setup. The proposed strategy makes the far-field manipulations of optical orbital angular momentum within an ultrathin interface viable and bridges singular optics and integrated optics. In addition, it enables more unique extensibility and flexibility in versatile optical elements than traditional phase-accumulated helical optical devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700