用户名: 密码: 验证码:
Coexistence of Ferroelectric Phases and Phonon Dynamics in Relaxor Ferroelectric Na0.5Bi0.5TiO3 Based Single Crystals
详细信息    查看全文
文摘
A combination of polarized Raman technique, infrared reflectance spectra, and first-principles density-functional theoretical calculations were used to investigate structure transformation and lattice vibrations of Na0.5Bi0.5TiO3, Na0.5Bi0.5TiO3–5%BaTiO3, and Na0.5Bi0.5TiO3–8%K0.5Bi0.5TiO3 single crystals. It was found that Na0.5Bi0.5TiO3 is of a two-phase mixture with rhombohedral and monoclinic structures at room temperature. Correspondingly, three Raman-active phonon modes located at 395, 790, and 868 cm−1, which were previously assumed as A1 modes of rhombohedral phase have been reassigned as A′′, A, and A modes of monoclinic phase in the present work. In particular, a strong low-frequency A′′ mode at 49 cm−1 was found and its temperature dependence was revealed. Two deviations from linearity for the abrupt frequency variation in the A′′ mode and Ti–O bond have been detected at temperatures of ferroelectric to antiferroelectric phase transition TF–AF and dielectric maximum temperature Tmax. The appearance of Na–O vibrations at 150 cm−1 was found below Tmax, indicating the existence of nanosized Na+TiO3 clusters. The observed Raman and infrared active modes belonging to distinct irreducible representations are in good agreement with group-theory predictions, which suggests 9A1+9E and 36A′′+24A modes for the rhombohedral and monoclinic phases of Na0.5Bi0.5TiO3, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700