用户名: 密码: 验证码:
Flexible CMOS-Like Circuits Based on Printed P-Type and N-Type Carbon Nanotube Thin-Film Transistors
详细信息    查看全文
文摘
P-type and n-type top-gate carbon nanotube thin-film transistors (TFTs) can be selectively and simultaneously fabricated on the same polyethylene terephthalate (PET) substrate by tuning the types of polymer-sorted semiconducting single-walled carbon nanotube (sc-SWCNT) inks, along with low temperature growth of HfO2 thin films as shared dielectric layers. Both the p-type and n-type TFTs show good electrical properties with on/off ratio of ≈105, mobility of ≈15 cm2 V−1 s−1, and small hysteresis. Complementary metal oxide semiconductor (CMOS)-like logic gates and circuits based on as-prepared p-type and n-type TFTs have been achieved. Flexible CMOS-like inverters exhibit large noise margin of 84% at low voltage (1/2 Vdd = 1.5 V) and maximum voltage gain of 30 at Vdd of 1.5 V and low power consumption of 0.1 μW. Both of the noise margin and voltage gain are one of the best values reported for flexible CMOS-like inverters at Vdd less than 2 V. The printed CMOS-like inverters work well at 10 kHz with 2% voltage loss and delay time of ≈15 μs. A 3-stage ring oscillator has also been demonstrated on PET substrates and the oscillation frequency of 3.3 kHz at Vdd of 1 V is achieved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700