用户名: 密码: 验证码:
Low nanomolar caffeic acid attenuates high glucose-induced endothelial dysfunction in primary human umbilical-vein endothelial cells by affecting NF-κB and Nrf2 pathways
详细信息    查看全文
文摘
Hyperglycemia contributes to dysregulate endothelial function associated with diabetes, leading to initiation and propagation of vascular complications and dysfunction. Caffeic acid (CA), a dietary hydroxycinnamic acid abundant in coffee, has been reported to exert antidiabetic effects in rat models. Herein, we investigated the molecular effects of physiological concentrations of CA (10 nM) against endothelial dysfunction induced by high glucose (HG) in human endothelial cells (HUVECs). HUVECs were exposed to HG 25 mM, to mimic diabetic condition, in presence of CA. Intracellular redox status (reduced glutathione, superoxide dismutase (SOD) and total antioxidant activity levels), and NF-κB pathway were examined. We also evaluated the involvement of NF-E2-related factor 2 (Nrf2)/electrophile responsive element (EpRE) pathway. Our data show that CA inhibits HG-induced nuclear translocation of NF-κB and the downstream expression of endothelial adhesion molecule 1 and restores antioxidant levels by upregulating Nrf2/EpRE pathway. Our data suggest that CA can suppress several aspects of HG-induced endothelial dysfunction through the modulation of intracellular redox status controlled by the transcription factor Nrf2. These findings highlight that low physiological concentration of CA achievable specifically upon food consumption are able to prevent endothelial dysfunction associated with inflammation and oxidative stress induced by high concentration of glucose.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700