用户名: 密码: 验证码:
Gray matter correlates of dopaminergic degeneration in Parkinson's disease: A hybrid PET/MR study using 18F-FP-CIT
详细信息    查看全文
文摘
Dopaminergic degeneration is a hallmark of Parkinson's disease (PD), which causes various symptoms affected by corticostriatal circuits. So far, the relationship between cortical changes and dopamine loss in the striatum is unclear. Here, we evaluate the gray matter (GM) changes in accordance with striatal dopaminergic degeneration in PD using hybrid PET/MR. Sixteen patients with idiopathic PD underwent 18F-FP-CIT PET/MR. To measure dopaminergic degeneration in PD, binding ratio (BR) of dopamine transporter in striatum was evaluated by 18F-FP-CIT. Voxel-based morphometry (VBM) was used to evaluate GM density. We obtained voxelwise correlation maps of GM density according to the striatal BR. Voxel-by-voxel correlation between BR maps and GM density maps was done to evaluate region-specific correlation of striatal dopaminergic degeneration. There was a trend of positive correlation between striatal BR and GM density in the cerebellum, parahippocampal gyri, and frontal cortex. A trend of negative correlation between striatal BR and GM density in the medial occipital cortex was found. Voxel-by-voxel correlation revealed that the positive correlation was mainly dependent on anterior striatal BR, while posterior striatal BR mostly showed negative correlation with GM density in occipital and temporal cortices. Decreased GM density related to anterior striatal dopaminergic degeneration might demonstrate degeneration of dopaminergic nonmotor circuits. Furthermore, the negative correlation could be related to the motor circuits of posterior striatum. Our integrated PET/MR study suggests that the widespread structural progressive changes in PD could denote the cortical functional correlates of the degeneration of striatal dopaminergic circuits. Hum Brain Mapp 37:1710–1721, 2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700