用户名: 密码: 验证码:
The genetic architecture of tristyly and its breakdown to self-fertilization
详细信息    查看全文
文摘
The floral polymorphism tristyly involves three style morphs with a reciprocal arrangement of stigma and anther heights governed by two diallelic loci (S and M). Tristyly functions to promote cross-pollination, but modifications to stamen position commonly cause transitions to selfing. Here, we integrate whole-genome sequencing and genetic mapping to investigate the genetic architecture of the M locus and the genetic basis of independent transitions to selfing in tristylous Eichhornia paniculata. We crossed independently derived semi-homostylous selfing variants of the long- and mid-styled morph fixed for alternate alleles at the M locus (ssmm and ssMM, respectively), and backcrossed the F1 to the parental ssmm genotype. We phenotyped and genotyped 462 backcross progeny using 1450 genotyping-by-sequencing (GBS) markers and performed composite interval mapping to identify quantitative trait loci (QTL) governing style-length and anther-height variation. A QTL associated with the primary style-morph differences (style length and anther height) mapped to linkage group 5 and spanned ~13–27.5 Mbp of assembled sequence. Bulk segregant analysis identified 334 genes containing SNPs potentially linked to the M locus. The stamen modifications characterizing each selfing variant were governed by loci on different linkage groups. Our results provide an important step towards identifying the M locus and demonstrate that transitions to selfing have originated by independent sets of mating-system modifier genes unlinked to the M locus, a pattern inconsistent with a recombinational origin of selfing variants at a putative supergene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700