用户名: 密码: 验证码:
Hypoxia-independent mechanisms of HIF-1α expression in astrocytes after ischemic preconditioning
详细信息    查看全文
  • 作者:Yuri Hirayama and Schuichi Koizumi
  • 刊名:Glia
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:65
  • 期:3
  • 页码:523-530
  • 全文大小:740K
  • ISSN:1098-1136
文摘
We recently demonstrated that ischemic tolerance was dependent on astrocytes, for which HIF-1α had an essential role. The mild ischemia (preconditioning; PC) increased HIF-1α in a biphasic pattern, that is, a quick and transient increase in neurons, followed by a slow and sustained increase in astrocytes. However, mechanisms underlying such temporal difference in HIF-1α increase remain totally unknown. Here, we show that unlike a hypoxia-dependent mechanism in neurons, astrocytes increase HIF-1α via a novel hypoxia-independent but P2X7-dependent mechanism. Using a middle cerebral artery occlusion (MCAO) model of mice, we found that the PC (a 15-min MCAO period)-evoked increase in HIF-1α in neurons was quick and transient (from 1 to 3 days after PC), but that in astrocytes was slow-onset and long-lasting (from 3 days to at least 2 weeks after PC). The neuronal HIF-1α increase was dependent on inhibition of PHD2, an oxygen-dependent HIF-1α degrading enzyme, whereas astrocytic one was independent of PHD2. Astrocytes even do not possess this enzyme. Instead, they produced a sustained increase in P2X7 receptors, activation of which resulted in HIF-1α increase. The hypoxia-independent but P2X7-receptor-dependent mechanism could allow astrocytes to cause long-lasting HIF-1α expression, thereby leading to induction of ischemic tolerance efficiently. GLIA 2017;65:523–530

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700