用户名: 密码: 验证码:
Constructing Implantable SrTiO3:Yb,Ho Nanofibers for NIR-Triggered and Optically Monitored Chemotherapy
详细信息    查看全文
文摘
Light-responsive and photoluminescent (PL) drug-delivery platforms have sparked fascinating advancements in personalized tumor chemotherapy due to their unique characteristics in biological imaging and manipulated release kinetics. Herein, implantable Yb3+ and Ho3+ co-doped strontium titanate (SrTiO3:Yb,Ho) nanofibers were synthesized and decorated on the surface with polyacrylic acid (PAA) molecules. The preliminary in vitro assay confirmed that this implantable fibrous mesh presented sound cytocompatibility. The PAA surface decoration improved the loading capacity of an anticancer drug (doxorubicin (DOX)) and effectively prevented a daunting burst release in a neutral aqueous environment. Owing to the electrostatic bond between PAA and DOX molecules, low-pH microenvironments and NIR (λ=808 nm) irradiation both induced significantly accelerated DOX release and consequently enhanced the local cancer-cell-killing effect. Additionally, the ratio of green-to-red emission (I545/I655) from the SrTiO3:Yb,Ho-PAA fibers responded effectively to the DOX release progress and dosage due to a fluorescence resonance energy transfer (FRET) effect. This unique characteristic enabled optical monitoring of the delivery progress in a timely manner. These SrTiO3:Yb,Ho-PAA nanofibers, with precise dual-triggering and optical monitoring of DOX release, are expected to serve as a new implantable drug delivery platform for personalized chemotherapy in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700