用户名: 密码: 验证码:
Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance
详细信息    查看全文
文摘
Electrospinning is the most facile and highly versatile approach to produce 1D polymeric, inorganic, and hybrid nanomaterials with a small diameter, controllable dimensions, and designed architectures. In particular, with large surface area, high porosity, low density, good directionality, and tunable composition, electrospun nanofibers and mats are regarded as ideal candidates for various kinds of electrochemical energy storage devices such as supercapacitors (SCs). In this review, the recent progress in electrospun electrode materials for SCs is presented, covering the architecture design and their electrochemical performance. After a brief introduction about SCs, the basic principles of the electrospinning technique are discussed. Following, attention is paid to the discussion of various electrospun nanofibers and mats including 1D carbons, metal oxides, metal sulfides, metal nitrides, conducting polymers and composite nanomaterials with various types of architectures as electrodes for SCs. The relationship between the composition, architecture, and the electrochemical performance is discussed in detail. Finally, some challenges and perspectives of future research of the electrospun nanofibers and mats for high performance SCs are highlighted. It is anticipated that this review would provide the researchers some inspiration for constructing new types of energy storage devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700