用户名: 密码: 验证码:
Charge density analysis of metformin chloride, a biguanide anti-hyperglycemic agent
详细信息    查看全文
文摘
The experimental charge density analysis of the anti-hyperglycemic agent metformin chloride with high-resolution X-ray diffraction data at low temperature (100 K) has been performed and these experimental results were compared with that derived from the corresponding periodic theoretical calculations at the B3LYP/6-31G** level of theory. The experimental and theoretical multipolar charge-density analyses of metformin chloride have been accomplished in order to understand its structural and electronic properties. The C and N atoms of the molecular backbone adopt a near trigonal geometry due to the occurrence of extensive delocalization/resonance of C—N bonds, as confirmed by topological analysis and also found by Natural Resonance Theory calculations performed in the isolated metformin cation. The molecule contains six C—N bonds and the topological bond order analysis shows that four bonds have bond orders close to 4/3 and two bonds can be considered as single. The analysis of numerical parameters of the valence shell charge concentration reports that the N3 atom, which forms two bonds with C atoms, possesses one non-bonding valence-shell charge concentration (VSCC) in the direction of the electron lone pair. Among the intermolecular interactions of the chloride atom with the H—C and H—N atoms, eight have been found to be shorter than the sum of van der Waals radii. The analysis of contacts on the Hirshfeld surface reveals that the H—N…Cl hydrogen bonds are enriched (over-represented) and act as the driving force in the crystal packing formation. The metformin cations form favorable electrostatic interactions with the chloride anions which have globally a stronger energy than the unfavorable cation/cation interactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700