用户名: 密码: 验证码:
Modeling the buoyancy-driven Black Sea Water outflow into the North Aegean Sea
详细信息    查看全文
文摘
A three-dimensional numerical model was applied to simulate the Black Sea Water (BSW) outflux and spreading over the North Aegean Sea, and its impact on circulation and stratification–mixing dynamics. Model results were validated against satellite-derived sea surface temperature and in-situ temperature and salinity profiles. Further, the model results were post-processed in terms of the potential energy anomaly, ϕ, analyzing the factors contributing to its change. It occurs that BSW contributes significantly on the Thracian Sea water column stratification, but its signal reduces in the rest of the North Aegean Sea. The BSW buoyancy flux contributed to the change of ϕ in the Thracian Sea by 1.23 × 10−3 W m−3 in the winter and 7.9 × 10−4 W m−3 in the summer, significantly higher than the corresponding solar heat flux contribution (1.41 × 10−5 W m−3 and 7.4 × 10−5 W m−3, respectively). Quantification of the ϕ-advective term crossing the north-western BSW branch (to the north of Lemnos Island), depicted a strong non-linear relation to the relative vorticity of Samothraki Anticyclone. Similar analysis for the south-western branch illustrated a relationship between the ϕ-advective term sign and the relative vorticity in the Sporades system. The ϕ-mixing term increases its significance under strong winds (>15 m s−1), tending to destroy surface meso-scale eddies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700