用户名: 密码: 验证码:
Effects on squeezing and sub-poissonian of light in fourth harmonic generation up to first-order Hamiltonian interaction
详细信息    查看全文
文摘
The effects on squeezing and sub-poissonian of light in fourth harmonic generation (FHG) are investigated based on the fully quantum mechanically up to the first order Hamiltonian interaction in gt, where g is the coupling constant between the modes per second and t is the interaction time between the waves during the process in a nonlinear medium. FHG is a process in which an incident laser beam of the fundamental frequency interacts with a nonlinear medium to produce the harmonic frequency at 4. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established. The occurrence of amplitude squeezing effects in both the quadratures of the radiation field in the fundamental mode is investigated and found to be dependent on the selective phase values of the field amplitude. The photon statistics of the pump mode in this process have also been investigated and found to be sub-poissonian in nature. It is found that there is no possibility to produce squeezed light in the harmonic mode up to first-order interaction in gt. Further, we have found the case up to second-order Hamiltonian interaction in gt that the normal squeezing in the harmonic mode is directly depends upon the fourth-order squeezing of the initial pump field. This gives a method of converting higher-order (fourth-order) squeezing into normal squeezing in the harmonic mode and vice versa.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700