用户名: 密码: 验证码:
A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes
详细信息    查看全文
文摘
Insulin-induced insulin receptor (IR) tyrosine kinase activation and insulin cell survival responses have been reported to be under the regulation of a membrane associated mammalian neuraminidase-1 (Neu1). The molecular mechanism(s) behind this process is unknown. Here, we uncover a novel Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B G-protein coupled receptor (GPCR), which is essential for insulin-induced IR activation and cellular signaling. Neu1, MMP-9 and neuromedin B GPCR form a complex with IR尾 subunit on the cell surface. Oseltamivir phosphate (Tamiflu庐), anti-Neu1 antibodies, broad range MMP inhibitors piperazine and galardin (GM6001), MMP-9 specific inhibitor (MMP-9i), and GPCR neuromedin B specific antagonist BIM-23127 dose-dependently inhibited Neu1 activity associated with insulin stimulated rat hepatoma cells (HTCs) that overly express human IRs (HTC-IR). Tamiflu, anti-Neu1 antibodies and MMP-9i attenuated phosphorylation of IR尾 and insulin receptor substrate-1 (IRS1) associated with insulin-stimulated cells. Olanzapine, an antipsychotic agent associated with insulin resistance, induced Neu3 sialidase activity in WG544 or 1140F01 human sialidosis fibroblast cells genetically defective in Neu1. Neu3 antagonist 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) and anti-Neu3 antibodies inhibited sialidase activity associated with olanzapine treated murine Neu4 knockout macrophage cells. Olanzapine attenuated phosphorylation of IGF-R and IRS1 associated with insulin-stimulated human wild-type fibroblast cells. Our findings identify a novel insulin receptor-signaling platform that is critically essential for insulin-induced IR尾 tyrosine kinase activation and cellular signaling. Olanzapine-induced Neu3 sialidase activity attenuated insulin-induced IGF-R and IRS1 phosphorylation contributing to insulin resistance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700