用户名: 密码: 验证码:
Methylglyoxal modification enhances the stability of hemoglobin and lowers its iron-mediated oxidation reactions: An in vitro study
详细信息    查看全文
文摘
Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. In the present study, we have investigated the in vitro effect of methylglyoxal (200, 300 μm) on the heme protein hemoglobin (HbA0) (100 μm) after incubation for one week at 25 °C. Compared to HbA0, MG-treated HbA0 exhibited decreased absorbance around 280 nm, reduced intrinsic fluorescence and lower surface hydrophobicity. MG treatment was not found to significantly affect the secondary structure of HbA0. The stability of MG-treated HbA0 was found to be higher compared to HbA0. Moreover, H2O2-mediated iron release and subsequent iron-mediated oxidation (Fenton) reactions were found to be lower in presence of MG-treated HbA0 compared to HbA0. As shown by mass spectrometric studies, MG modified Arg-92α, Arg-104β, Arg-31α and Arg-40β of HbA0 to hydroimidazolone adducts. The modifications thus appear to be associated with the observed structural alterations of the heme protein. Considering the increased level of MG in diabetes mellitus as well as its high reactivity, AGEs might be associated with structural and functional modifications of the protein including physiological significance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700