用户名: 密码: 验证码:
A Uridine Glucuronosyltransferase 2B7 Polymorphism Predicts Epirubicin Clearance and Outcomes in Early-Stage Breast Cancer
详细信息    查看全文
文摘
Epirubicin is metabolized by uridine glucuronosyltransferase 2B7 (UGT2B7), an enzyme rich in single nucleotide polymorphisms (SNPs). We studied whether the −161 C > T germline SNP in UGT2B7 was related to epirubicin metabolism and whether differences exist in the toxicity and efficacy of epirubicin-based chemotherapy among patients who were TT homozygotes, CT heterozygotes, and CC homozygotes.

Patients and Methods

A total of 132 women with non–metastatic breast cancer receiving FEC (5-fluorouracil 500 mg/m2, epirubicin 100 mg/m2, cyclophosphamide 500 mg/m2) were prospectively enrolled. Toxicity was assessed in cycle 1 using the National Cancer Institute Common Toxicity Criteria, version 2.0.

Results

The sequence at −161 was studied in 132 subjects; 37 were TT homozygotes, 63 were CT heterozygotes, 26 were CC homozygotes, and 6 could not be genotyped. The CC genotype patients had decreased epirubicin clearance (median, 103.3 L/hr) compared with the CT/TT genotype patients (median, 134.0 L/hr; P = .002). The CC homozygous patients had an increased risk of grade 3 to 4 leukopenia compared with the TT homozygotes or heterozygotes (P = .038 and P = .032, respectively). TT homozygotes or heterozygotes had an increased risk of early recurrence (P = .039; χ2 test).

Conclusion

The results of the present prospective pharmacogenetic study suggest that the UGT2B7 −161 C > T SNP correlate with drug metabolism, toxicity, and efficacy in patients receiving epirubicin chemotherapy. Further studies of this UGT2B7 SNP as a predictor of epirubicin toxicity and efficacy are warranted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700