用户名: 密码: 验证码:
Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells
详细信息    查看全文
文摘
Catechins and their polymers procyanidins are health-promoting flavonoids found in edible vegetables and fruits. They act as antioxidants by scavenging reactive oxygen species and by chelating the redox-active metals iron and copper. They also behave as signaling molecules, modulating multiple cell signalling pathways and gene expression, including that of antioxidant enzymes. This study aimed at determining whether catechins and procyanidins interact with the redox-inactive metal zinc and at assessing their effect on cellular zinc homeostasis. We found that a grape-seed procyanidin extract (GSPE) and the green tea flavonoid (−)-epigallocatechin-3-gallate (EGCG) bind zinc cations in solution with higher affinity than the zinc-specific chelator Zinquin, and dose-dependently prevent zinc-induced toxicity in the human hepatocarcinoma cell line HepG2, evaluated by the lactate dehydrogenase test. GSPE and EGCG hinder intracellular accumulation of total zinc, measured by atomic flame absorption spectrometry, concomitantly increasing the level of cytoplasmic labile zinc detectable by Zinquin fluorescence. Concurrently, GSPE and EGCG inhibit the expression, evaluated at the mRNA level by quantitative reverse transcriptase-polymerase chain reaction, of zinc-binding metallothioneins and of plasma membrane zinc exporter ZnT1 (SLC30A1), while enhancing the expression of cellular zinc importers ZIP1 (SLC39A1) and ZIP4 (SLC39A4). GSPE and EGCG also produce all these effects when HepG2 cells are stimulated to import zinc by treatment with supplemental zinc or the proinflammatory cytokine interleukin-6. We suggest that extracellular complexation of zinc cations and the elevation of cytoplasmic labile zinc may be relevant mechanisms underlying the modulation of diverse cell signaling and metabolic pathways by catechins and procyanidins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700