用户名: 密码: 验证码:
Surgical tips of intramedullary nailing in severely bowed femurs in atypical femur fractures: Simulation with 3D printed model
详细信息    查看全文
文摘
The surgical management of atypical femoral fractures (AFFs) is complex in cases with severe bowing of the femur, being associated with a high rate of failure. Our first aim was to use preoperative templating and 3D printed model characterise the technical difficulties associated with use of current commercially available intramedullary nail (IMN) systems for the management of AFFs with severe bowing. Our second aim was to use outcomes of our 3D printing analysis to define technical criteria to overcome these problems.

Material and Methods

The modelled femur with 3D printing had an anterior bowing curvature radius of 772 mm and an angle of lateral bowing of 15.4°. Nine commercially available IMN systems were evaluated in terms of position of the nail within the medullary canal, occurrence of perforation of femoral cortex by the distal tip of the nail, and location of the site of perforation relative to the knee joint. The following IMN systems were evaluated: unreamed femoral nail (UFN), cannulated femoral nail (CFN), Sirus nail, right and left expert Asian femoral nail (A2FN), right and left Zimmer Natural Nail (ZNN), proximal femoral nail anti-rotation (PFNA), and Zimmer Cephalomedullary Nail (CMN).

Results

Along the sagittal plane, the UFN, CFN and Sirus systems were acceptably contained within the medullary canal, as well as the “opposite side” A2FN and ZNN. Only the Sirus IMN system was contained along the coronal plane. The distal part of the all other IMN systems perforated the anterior cortex of the femur, at distances ranging between 2.8 and 11.7 cm above the distal end of the femoral condyles. Using simulated fracture reduction in the 3D printed model, none of the 9 IMN systems provided acceptable anatomical reduction of the fracture. A residual gap in fragment position and translation was provided by the “opposite side” ZNN, followed by the UFN and Sirus systems.

Conclusion

Commercially available IMN systems showed mismatch with severely bowed femurs. Our simulation supports that fit of these systems can be improved using an IMN system with a small radius of curvature and diameter, and by applying specific operative procedures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700