用户名: 密码: 验证码:
Multi-scale modelling of silicon nanocrystal synthesis by Low Pressure Chemical Vapor Deposition
详细信息    查看全文
文摘
A multi-scale model has been developed in order to represent the nucleation and growth phenomena taking place during silicon nanocrystal (NC) synthesis on SiO2 substrates by Low Pressure Chemical Vapor Deposition from pure silane SiH4. Intrinsic sticking coefficients and H2 desorption kinetic parameters were established by ab initio modelling for the first three stages of silicon chemisorption on SiO2 sites, i.e. silanol Si―OH bonds and siloxane Si―O―Si bridges. This ab initio study has revealed that silane cannot directly chemisorb on SiO2 sites, the first silicon chemisorption proceeds from homogeneously born unsaturated species like silylene SiH2. These kinetic data were implemented into the Computational Fluid Dynamics Fluent code at the industrial reactor scale, by activating its system of surface site control in transient conditions. NC area densities and radii deduced from Fluent calculations were validated by comparison with experimental data. Information about the deposition mechanisms was then obtained. In particular, hydrogen desorption has been identified as the main limiting step of NC nucleation and growth, and the NC growth rate highly increases with run duration due to the autocatalytic nature of deposition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700