用户名: 密码: 验证码:
The Influence of Network Topology on Reverse-engineering of Gene-regulatory Networks
详细信息    查看全文
文摘
Modeling and simulation of gene-regulatory networks (GRNs) has become an important aspect of modern computational biology investigations into gene regulation. A key challenge in this area is the automated inference (reverse-engineering) of dynamic, mechanistic GRN models from time-course gene expression data. Common mathematical formalisms used to represent such models capture both the relative weight or strength of a regulator gene and the type of the regulator (activator, repressor) with a single model parameter. The goal of this study is to quantify the role this parameter plays in terms of the computational performance of the reverse-engineering process and the predictive power of the inferred GRN models. We carried out three sets of computational experiments on a GRN system consisting of 22 genes. While more comprehensive studies of this kind are ultimately required, this computational study demonstrates that models with similar training (reverse-engineering) error that have been inferred under varying degrees of a priori known topology information, exhibit considerably different predictive performance. This study was performed with a newly developed multiscale modeling and simulation tool called MultiGrain/MAPPER.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700