用户名: 密码: 验证码:
Thermal-hydraulic performance of a multiple jet cooling module with a concave dimple array in a helium-cooled divertor
详细信息    查看全文
文摘
A numerical study was performed to evaluate the thermal-hydraulic performance of a finger type cooling module, where multiple jets impinge on the surface with concave dimples, in the divertor of a nuclear fusion reactor. Conjugate heat transfer was analyzed in both the solid and fluid domains using three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. The computational domain consisted of a single fluid domain and three solid domains: tile, thimble, and cartridge. The numerical results for the temperature variation on the tile were validated in comparison with the experimental data. A parametric study was performed with two design variables, the ratios of dimple diameter and dimple height to the nozzle diameter, and two dimple arrays (inline and staggered arrays). The parametric study showed that the heat transfer rate was increased by up to 2.62% by introducing concave dimples, and that the heat transfer and pressure drop performances increased with increasing diameter and height of the dimples for a specified dimple array.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700