用户名: 密码: 验证码:
Leukotriene D4 and prostaglandin E2 signals synergize and potentiate vascular inflammation in a mast cell-dependent manner through cysteinyl leukotriene receptor 1 and E-prostanoid receptor 3
详细信息    查看全文
文摘
Although arachidonic acid metabolites, cysteinyl leukotrienes (cys-LTs; leukotriene [LT] C4, LTD4, and LTE4), and prostaglandin (PG) E2 are generated at the site of inflammation, it is not known whether crosstalk exists between these 2 classes of inflammatory mediators.

Objective

We sought to determine the role of LTD4-PGE2 crosstalk in inducing vascular inflammation m>in vivom>, identify effector cells, and ascertain specific receptors and pathways involved m>in vitrom>.

Methods

Vascular (ear) inflammation was assessed by injecting agonists into mouse ears, followed by measuring ear thickness and histology, calcium influx with Fura-2, phosphorylation and expression of signaling molecules by means of immunoblotting, PGD2 and macrophage inflammatory protein 1β generation by using ELISA, and expression of transcripts by using RT-PCR. Candidate receptors and signaling molecules were identified by using antagonists and inhibitors and confirmed by using small interfering RNA.

Results

LTD4 plus PGE2 potentiated vascular permeability and edema, gearing the system toward proinflammation in wild-type mice but not in m>Kitm>m>W-shm> mice. Furthermore, LTD4 plus PGE2, through cysteinyl leukotriene receptor 1 (CysLT1R) and E-prostanoid receptor (EP) 3, enhanced extracellular signal-regulated kinase (Erk) and c-fos phosphorylation, inflammatory gene expression, macrophage inflammatory protein 1β secretion, COX-2 upregulation, and PGD2 generation in mast cells. Additionally, we uncovered that this synergism is mediated through Gi, protein kinase G, and Erk signaling. LTD4 plus PGE2–potentiated effects are partially sensitive to CysLT1R or EP3 antagonists but completely abolished by simultaneous treatment both m>in vitrom> and m>in vivom>.

Conclusions

Our results unravel a unique LTD4-PGE2 interaction affecting mast cells through CysLT1R and EP3 involving Gi, protein kinase G, and Erk and contributing to vascular inflammation m>in vivom>. Furthermore, current results also suggest an advantage of targeting both CysLT1R and EP3 in attenuating inflammation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700