用户名: 密码: 验证码:
Regulation of cancerous progression and epithelial-mesenchymal transition by miR-34c-3p via modulation of MAP3K2 signaling in triple-negative breast cancer cells
详细信息    查看全文
文摘
Emerging but limited data have evidenced an essential involvement of microRNAs (miRNAs) in the development and progression of triple negative breast cancer (TNBC), which empowers these small regulators as an innovative therapeutic approach, especially for this unique tumor subgroup still lacking an efficient and specific therapeutic target. Herein, we reported the down-regulation of miR-34c-3p level in TNBC tissues, and its expression was closely associated with estrogen receptor alpha (ERα), but not other receptors, in well-characterized breast cancer (BCa) cells. Functionally, ectopic expression of miR-34c-3p inhibited migration, invasion and epithelial-mesenchymal transition (EMT) in TNBC cells. From a mechanistic standpoint, bioinformatics coupled with luciferase and gain-of-function, loss-of-function assays showed that miR-34c-3p may regulate TNBC progression by directly targeting the 3’-untranslated region (UTR) of mitogen-activated protein kinase kinase kinase 2 (MAP3K2). Consistently, MAP3K2 overexpression could effectively rescue miR-34c-3p mimics-induced suppression of cell invasion and EMT. In light of these findings, miR-34c-3p may function as a tumor suppressor in regulating of TNBC invasiveness and EMT through negatively modulating MAP3K2 pathway. Future endeavor in this field may help to identify a novel biomarker to predict prognosis and response to therapy in TNBC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700