用户名: 密码: 验证码:
A new DFT methodology for k-CNOT reversible circuits and its implementation using quantum-dot cellular automata
详细信息    查看全文
文摘
Testable design of reversible circuits leads to a large increment in operating costs from their original circuits. This paper presents a new cost efficient methodology of converting k-CNOT gates based circuits into respective parity preserving circuits. The testability of these circuits can be achieved simply by checking the input and output parity by means of CNOT gates. The design process requires only a single wire for its formulation without an increase in number of garbage outputs and provides full fault coverage under single bit fault detection with lesser design complexity. Experiments were performed on a set of benchmark circuits and the results show a reduction in operating costs up to 45% as compared to prior work. The work is also justified by implementing k-CNOT gates in quantum-dot cellular automata (QCA) to prove the efficiency of our work in physical foreground.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700