用户名: 密码: 验证码:
Interaction of α-synuclein with biomembranes in Parkinson's disease —role of cardiolipin
详细信息    查看全文
文摘
One of the key molecular events underlying the pathogenesis of Parkinson's disease (PD) is the aberrant misfolding and aggregation of the α-synuclein (αS) protein into higher-order oligomers that play a key role in neuronal dysfunction and degeneration. A wealth of experimental data supports the hypothesis that the neurotoxicity of αS oligomers is intrinsically linked with their ability to interact with, and disrupt, biological membranes; especially those membranes having negatively-charged surfaces and/or lipid packing defects. Consequences of αS–lipid interaction include increased membrane tension, permeation by pore formation, membrane lysis and/or leakage due to the extraction of lipids from the bilayer. Moreover, we assert that the interaction of αS with a liquid-disordering phospholipid uniquely enriched in mitochondrial membranes, namely cardiolipin (1,3-diphosphatidyl-sn-glycerol, CL), helps target the αS oligomeric complexes intracellularly to mitochondria. Binding mediated by CL may thus represent an important pathomechanism by which cytosolic αS could physically associate with mitochondrial membranes and disrupt their integrity. Impaired mitochondrial function culminates in a cellular bioenergetic crisis and apoptotic death. To conclude, we advocate the accelerated discovery of new drugs targeting this pathway in order to restore mitochondrial function in PD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700