用户名: 密码: 验证码:
Investigation of quartz microbalance and ChemFET transduction of molecular recognition events in a metalloporphyrin film
详细信息    查看全文
文摘
Progresses of synthetic chemistry methodologies have allowed the preparation of a great variety of artificial receptors that are particularly appealing for chemical sensor development. In this paper, we investigate and compare the properties of gas sensors based on two types of devices, quartz microbalances (QMBs) and field effect transistors (FETs), which give the means to exploit the molecular recognition events occurring in non-conductive sensing layers formed by a thiol-modified cobalt tetraphenylporphyrin (CoTPPSH). Since QMB is sensitive to mass and FET is sensitive to electric dipoles, the resulting sensors are expected to exhibit different sensitivities and selectivities, although both based on the same sensing layer. In particular we show that the high sensitivity of CoTPPSH-coated FETs towards CO and NO is a consequence of the significant CoTPPSH electric dipole change after the gas coordination to the metal centre.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700