用户名: 密码: 验证码:
Investigation of the structural and mechanical properties of polypropylene-based carbon fiber nanocomposites by experimental measurement and molecular dynamics simulation
详细信息    查看全文
文摘
This study investigates the interfacial strengths between polypropylene (PP)/carbon fiber (CF) composites through experimental observation as well as using molecular dynamics (MD) simulation to determine optimal chemical functionalization groups for four PP/CF composites. First, the structures of PP/CF, PP-graft-maleic anhydride (PP-MAH)/CF, PP-MAH/CF-NH2 (2%) and PP-MAH/CF-NH2 (5%) were constructed to obtain stable interface structures by the simulated-annealing procedure, and these structures were further used to evaluate the interface bonding strength. The study found that the degrees of crystallinity of PP and PP-MAH at the interfaces are significantly improved when compared to those of the pristine structure. The results show, through the interaction energy per unit area and the tensile simulation mechanical strength, that the strengths of the modified PP/functionalized-CF are higher. Finally, the MD simulation results of the modified PP and functionalized-CF composites are demonstrated to provide an economical and quick approach to examine the mechanical properties of a polymer composite system before conducting an experiment. Such MD results can be utilized to guide both the design of polymer/carbon fiber composites and to select proper functionalized groups.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700