用户名: 密码: 验证码:
Computed Tomography Fractional Flow Reserve Can Identify Culprit Lesions in Aortoiliac Occlusive Disease Using Minimally Invasive Techniques
详细信息    查看全文
文摘
Currently, the gold standard diagnostic examination for significant aortoiliac lesions is angiography. Fractional flow reserve (FFR) has a growing body of literature in coronary artery disease as a minimally invasive diagnostic procedure. Improvements in numerical hemodynamics have allowed for an accurate and minimally invasive approach to estimating FFR, utilizing cross-sectional imaging. We aim to demonstrate a similar approach to aortoiliac occlusive disease (AIOD).MethodsA retrospective review evaluated 7 patients with claudication and cross-sectional imaging showing AIOD. FFR was subsequently measured during conventional angiogram with pull-back pressures in a retrograde fashion. To estimate computed tomography (CT) FFR, CT angiography (CTA) image data were analyzed using the SimVascular software suite to create a computational fluid dynamics model of the aortoiliac system. Inlet flow conditions were derived based on cardiac output, while 3-element Windkessel outlet boundary conditions were optimized to match the expected systolic and diastolic pressures, with outlet resistance distributed based on Murray's law. The data were evaluated with a Student's t-test and receiver operating characteristic curve.ResultsAll patients had evidence of AIOD on CT and FFR was successfully measured during angiography. The modeled data were found to have high sensitivity and specificity between the measured and CT FFR (P = 0.986, area under the curve = 1). The average difference between the measured and calculated FFRs was 0.136, with a range from 0.03 to 0.30.ConclusionsCT FFR successfully identified aortoiliac lesions with significant pressure drops that were identified with angiographically measured FFR. CT FFR has the potential to provide a minimally invasive approach to identify flow-limiting stenosis for AIOD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700