用户名: 密码: 验证码:
Stress evolution during 3D single-layer visco-elastic buckle folding: Implications for the initiation of fractures
详细信息    查看全文
文摘
Buckle folds of sedimentary strata commonly feature a variety of different fracture sets. Some fracture sets including outer arc tensile fractures and inner arc shear fractures at the fold hinge zones are well understood by the extensional and compressional strain/stress pattern. However, other commonly observed fracture sets, including tensile fractures parallel to the fold axis, tensile fractures cutting through the limb, extensional faults at the fold hinge, and other shear fractures of various orientations in the fold limb, fail to be intuitively explained by the strain/stress regimes during the buckling process. To obtain a better understanding of the conditions for the initiation of the various fractures sets associated with single-layer cylindrical buckle folds, a 3D finite element modeling approach using a Maxwell visco-elastic rheology is utilized. The influences of three model parameters with significant influence on fracture initiation are considered: burial depth, viscosity, and permeability. It is concluded that these parameters are critical for the initiation of major fracture sets at the hinge zone with varying degrees. The numerical simulation results further show that the buckling process fails to explain most of the fracture sets occurring in the limb unless the process of erosional unloading as a post-fold phenomenon is considered. For fracture sets that only develop under unrealistic boundary conditions, the results demonstrate that their development is realistic for a perclinal fold geometry. In summary, a more thorough understanding of fractures sets associated with buckle folds is obtained based on the simulation of in-situ stress conditions during the structural development of buckle folds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700