用户名: 密码: 验证码:
Prolonged hypothermia exposure diminishes neuroprotection for severe ischemic-hypoxic primary neurons
详细信息    查看全文
文摘
This study aimed to identify optimal mild hypothermic (MH) condition that would provide the best protection for neuronal cells undergoing severe ischemia and hypoxia. We also sought to determine if longer exposure to mild hypothermia would confer greater protection to severe ischemia and hypoxia in these cells. We designed a primary neuronal cell model for severe glucose and oxygen deprivation/reoxygenation (OGD/R) to simulate the hypoxic-ischemic condition of patients with severe stroke, trauma, or hypoxic-ischemic encephalopathy. We evaluated the viability of these neurons following 3 h of OGD/R and variable MH conditions including different temperatures and durations of OGD/R exposure. We further explored the effects of the optimal MH condition on several parts which are associated with mitochondrial apoptosis pathway: intracellular calcium, reactive oxygen species (ROS), and mitochondrial transmembrane potential (MTP). The results of this study showed that the apoptosis proportion (AP) and cell viability proportion (CVP) after OGD/R significantly varied depending on which MH condition cells were exposed to (p < 0.001). Further, our findings showed that prolonged MH reduced the neuroprotection to AP and CVP. We also determined that the optimal MH conditions (34 °C for 4.5 h) reduced intracellular calcium, ROS, and recovered MTP. These findings indicate that there is an optimal MH treatment strategy for severely hypoxia-ischemic neurons, prolonged duration might diminish the neuroprotection, and that MH treatment likely initiates neuroprotection by inhibiting the mitochondrial apoptosis pathway.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700