用户名: 密码: 验证码:
A numerical study of nanofluid forced convection in ribbed channels
详细信息    查看全文
文摘
In this paper a numerical investigation on forced convection with nanofluids, composed by water and Al2O3 nanoparticles, in a two-dimensional channel is carried out. A uniform heat flux is applied on the external walls. A single-phase approach is employed to model nanofluids and the fluid properties are considered constant with temperature. The particle size is set equal to 38 nm and nanoparticle volume fractions from 0 % to 4 % are considered. The flow regime is turbulent and Reynolds numbers are in the range 20,000-60,000. Furthermore, square and rectangular shapes and different arrangements of ribs are analyzed in terms of different dimensionless heights and pitches of elements. The investigation is accomplished by means of Fluent code and its aim consists into find arrangements of ribs such to give high heat transfer coefficients and low pressure drops in presence of water-Al2O3 nanofluids. Results are presented in terms of temperature and velocity fields, and profiles of average Nusselt number, average heat transfer coefficients and required pumping power. Heat transfer enhancement increases with the particle volume concentration but it is accompanied by increasing required pumping power. The heat transfer improves, as Reynolds number raises, but also an increase of pumping power is observed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700