用户名: 密码: 验证码:
Defect engineering in development of low thermal conductivity materials: A review
详细信息    查看全文
文摘
Low thermal conductivity is the key property dominating the heat insulation ability of thermal barrier coatings (TBC). Reducing the intrinsic thermal conductivity is the major topic for developing advanced TBCs. Defect engineering has attracted much attention in seeking better TBC materials since lattice defects play a crucial role in phonon scattering and thermal conductivity reduction. Oxygen vacancies and substitutions are proven to be the most effective, while the accompanying lattice distortion is also of great importance. In this paper, recent advances of reducing the thermal conductivity of potential thermal barrier coating materials by defect engineering are comprehensively reviewed. Effects of the mass and size mismatch between the defects and the host lattice are quantitatively estimated and unconventional thermal conductivity reduction caused by the lattice distortions is also discussed. Finally, challenges and potential opportunities are briefly assessed to further minimize the thermal conductivity of TBC materials in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700