用户名: 密码: 验证码:
Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition
详细信息    查看全文
文摘
Retinal image of surrounding objects varies tremendously due to the changes in position, size, pose, illumination condition, background context, occlusion, noise, and non-rigid deformations. But despite these huge variations, our visual system is able to invariantly recognize any object in just a fraction of a second. To date, various computational models have been proposed to mimic the hierarchical processing of the ventral visual pathway, with limited success. Here, we show that the association of both biologically inspired network architecture and learning rule significantly improves the models׳ performance when facing challenging invariant object recognition problems. Our model is an asynchronous feedforward spiking neural network. When the network is presented with natural images, the neurons in the entry layers detect edges, and the most activated ones fire first, while neurons in higher layers are equipped with spike timing-dependent plasticity. These neurons progressively become selective to intermediate complexity visual features appropriate for object categorization. The model is evaluated on 3D-Object and ETH-80 datasets which are two benchmarks for invariant object recognition, and is shown to outperform state-of-the-art models, including DeepConvNet and HMAX. This demonstrates its ability to accurately recognize different instances of multiple object classes even under various appearance conditions (different views, scales, tilts, and backgrounds). Several statistical analysis techniques are used to show that our model extracts class specific and highly informative features.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700