用户名: 密码: 验证码:
Discontinuous Cell Method (DCM) for the simulation of cohesive fracture and fragmentation of continuous media
详细信息    查看全文
文摘
In this paper, the Discontinuous Cell Method (DCM) is formulated with the objective of simulating cohesive fracture propagation and fragmentation in homogeneous solids without issues relevant to excessive mesh deformation typical of available Finite Element formulations. DCM discretizes solids by using the Delaunay triangulation and its associated Voronoi tessellation giving rise to a system of discrete cells interacting through shared facets. For each Voronoi cell, the displacement field is approximated on the basis of rigid body kinematics, which is used to compute a strain vector at the centroid of the Voronoi facets. Such strain vector is demonstrated to be the projection of the strain tensor at that location. At the same point stress tractions are computed through vectorial constitutive equations derived on the basis of classical continuum tensorial theories. Results of analysis of a cantilever beam are used to perform convergence studies and comparison with classical finite element formulations in the elastic regime. Furthermore, cohesive fracture and fragmentation of homogeneous solids are studied under quasi-static and dynamic loading conditions. The mesh dependency problem, typically encountered upon adopting softening constitutive equations, is tackled through the crack band approach. This study demonstrates the capabilities of DCM by solving multiple benchmark problems relevant to cohesive crack propagation. The simulations show that DCM can handle effectively a wide range of problems from the simulation of a single propagating fracture to crack branching and fragmentation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700