用户名: 密码: 验证码:
Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles /ZnO flowers heterojunction
详细信息    查看全文
文摘
Here we report the fabrication of high surface area CuO nanoparticles (NPs) on micron-scale ZnO (CuO/ZnO) “flowers” with dimethyl methylphosphonate (DMMP) gas sensing capabilities. The formation of CuO NPs/ZnO heterojunction structures was confirmed by PXRD and TEM analyses. The gas sensing properties of the CuO NPs/ZnO structures showed a faster response time (26.2 s) compared to the exclusively ZnO-based sensor (330 s). The heterojunction sensors demonstrated the highest selectivity in 10 ppm DMMP, reaching the high value of 626.21 at 350 °C. This CuO NPs/ZnO heterojunction structure provides an extension of the depletion layer and an increase of the resistance (Ra) in air, leading to a reduction of the depletion layer and resistance (Rg) when exposed to reducing DMMP gas. The higher surface area (6.0 m2/g) of the CuO/ZnO heterojunction structure with a 0.5 h synthesis time of the ZnO flowers further promoted the adsorption kinetics for the reaction between C3H9O3P and O2− when exposed to DMMP, thus enhancing its sensing properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700