用户名: 密码: 验证码:
Quasi-static and dynamic deformation mechanisms interpreted by microstructural evolution in TWinning Induced Plasticity (TWIP) steel
详细信息    查看全文
文摘
As automotive steels require high impact resistance for absorbing impact energy upon vehicle body collision, detailed investigation of dynamic deformation behavior of TWinning Induced Plasticity (TWIP) steels is essentially needed. Here we show a plausible explanation of improving dynamic tensile properties by investigating deformation mechanisms using transmission electron microscopy and electron back-scatter diffraction analyses of interrupted tensile specimens. According to microstructural evolution results, slip mechanisms change from wavy slip to (planar+wavy) slip with increasing strain rate. With respect to twinning, the transition occurs from stacking faults to primary twins with increasing strain under quasi-static loading, while twinning becomes more activated under dynamic loading. Due to favorable effects of increased planar slip and twinning on tensile properties, the TWIP steel shows higher strength and similar ductility under dynamic loading. Our results demonstrate desirable applications of the TWIP steel to automotive steel sheets demanding excellent safety requirement of vehicle body.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700