用户名: 密码: 验证码:
Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors
详细信息    查看全文
文摘
The electrochemical flow capacitor (EFC) is an electrical energy storage concept recently introduced for grid-scale energy storage applications. The EFC utilizes flowable carbon-based electrodes as the active material in a flow battery type architecture for capacitive storage and recovery of energy. Charged slurry can be stored in external reservoirs until it is needed, enabling scalable energy storage to satisfy a variety of large-scale applications. Here, the capacitance and conductivity of EFC slurry electrodes were measured as a function of flow rate (from 0 to 10聽ml聽min鈭?) and flow cell channel depth (electrode 鈥榯hickness鈥? ranging from 0.5 to 3聽mm). The effect of salt concentration in the electrolyte was also explored. The interfacial resistance associated with the current collector|slurry interface was found to constitute a large portion of the total cell resistance. Bulk slurry conductivity was found to vary significantly with changes in electrolyte concentration, flow rate and channel depth. Very respectable capacitance values of up to 鈭?0聽F聽ml鈭? (150聽F聽g鈭?) were obtained during intermittent flow operation. However, significant underutilization of the slurry due to increased ohmic losses at larger channel depths was observed, as evidenced by a rapid decay in capacitance with increasing channel depth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700