用户名: 密码: 验证码:
Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+-based Na+ flux in root cell under salt stress
详细信息    查看全文
文摘
Little is known about the role of mitogen-activated protein kinase 6 (MPK6) in Na+ toxicity and inhibition of root growth in Arabidopsis under NaCl stress. In this study, we found that root elongation in seedlings of the loss-of-function mutants mpk6-2 and mpk6-3 was less sensitive to NaCl or Na-glutamate, but not to KCl or mannitol, as compared with that of wild-type (WT) seedlings. The less sensitive characteristic was eliminated by adding the Ca2+ chelator EGTA or the Ca2+ channel inhibitor LaCl3, but not the Ca2+ ionophore A23187. This suggested that the tolerance of mpk6 to Na+ toxicity was Ca2+-dependent. We measured plasma membrane (PM) Na+-conducted currents (NCCs) in root cells. Increased concentrations of NaCl increased the inward NCCs while decreased the outward NCCs in WT root cells, attended by a positive shift in membrane potential. In mpk6 root cells, NaCl significantly increased outward but not inward NCCs, accompanied by a negative shift in membrane potential. That is, mpk6 decreased NaCl-induced the Na+ accumulation by modifying PM Na+ flux in root cells. Observations of aequorin luminescence revealed a NaCl-induced increase of cytosolic Ca2+ in mpk6 root cells, resulting from PM Ca2+ influx. An increase of cytosolic Ca2+ was required to alleviate the NaCl-increased Na+ content and Na+/K+ ratio in mpk6 roots. Together, these results show that mpk6 accumulated less Na+ in response to NaCl because of the increased cytosolic Ca2+ level in root cells; thus, its root elongation was less inhibited than that of WT by NaCl.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700