用户名: 密码: 验证码:
Oil-in-microgel strategy for enzymatic-triggered release of hydrophobic drugs
详细信息    查看全文
文摘
Polymer microgels have received considerable attention due to their great potential in the biomedical field as drug delivery systems. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan composed of N-acetyl-d-glucosamine and d-glucuronic acid. This polymer is biodegradable, nontoxic, and can be chemically modified. In this work, a co-flow microfluidic strategy for the preparation of biodegradable HA microgels encapsulating hydrophobic drugs is presented. The approach relies on: (i) generation of a primary oil-in-water (O/W) nanoemulsion by the ultrasonication method, (ii) formation of a double oil-in-water-in-oil emulsion (O/W/O) using microfluidics, and (iii) cross-linking of microgels by photopolymerization of HA precursors modified with methacrylate groups (HA-MA) present in the aqueous phase of the droplets. The procedure is used for the encapsulation and controlled release of progesterone. Degradability and encapsulation/release studies in PBS buffer at 37 °C in presence of different concentrations of hyaluronidase are performed. It is demonstrated that enzymatic degradation can be used to trigger the release of progesterone from microgels. This method provides precise control of the release system and can be applied for the encapsulation and controlled release of different types of hydrophobic drugs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700