用户名: 密码: 验证码:
On the Origin of Heterotrophy
详细信息    查看全文
文摘
The theory of autotrophic origins of life posits that the first cells on Earth satisfied their carbon needs from CO2. At hydrothermal vents, spontaneous synthesis of methane via serpentinization links an energy metabolic reaction with a geochemical homologue. If the first cells were autotrophs, how did the first heterotrophs arise, and what was their substrate? We propose that cell mass roughly similar to the composition of Escherichia coli was the substrate for the first chemoorganoheterotrophs. Amino acid fermentations, pathways typical of anaerobic clostridia and common among anaerobic archaea, in addition to clostridial type purine fermentations, might have been the first forms of heterotrophic carbon and energy metabolism. Ribose was probably the first abundant sugar, and the archaeal type III RubisCO pathway of nucleoside monophosphate conversion to 3-phosphoglycerate might be a relic of ancient heterotrophy. Participation of chemiosmotic coupling and flavin-based electron bifurcation – a soluble energy coupling process – in clostridial amino acid and purine fermentations is consistent with an autotrophic origin of both metabolism and heterotrophy, as is the involvement of S0 as an electron acceptor in the facilitated fermentations of anaerobic heterotrophic archaea.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700