用户名: 密码: 验证码:
Tensile creep measurements of ordinary ceramic refractories at service related loads including setup, creep law, testing and evaluation procedures
详细信息    查看全文
文摘
The performance of refractories under operating conditions is often influenced by tensile creep. This paper proposes a high-temperature tensile testing device which allows for long term creep measurements at operating loads. The chosen specimen geometry is more adequate for the testing of ordinary ceramic refractories which may be heterogeneous with respect to grain size (maximum grain size e.g. 5 mm) and chemical composition. For this application the innovative design exhibits not only improved specimen and loading alignments, but also reliable specimen holding and cooling systems. Specific procedures were followed to avoid uneven stress distribution along the specimen gauge length. The testing procedure was optimized by simulating experimental creep conditions with a finite element (FE) model built with the software Abaqus. Measurements were performed on magnesia–chromite material at different temperatures and applied stresses. Under these testing conditions, three creep stages emerged. The Norton-Bailey creep rate equation was employed to describe the creep behavior for the three stages. An evaluation using the Generalized Reduced Gradient (GRG) algorithm was then performed in order to identify the three creep stages and inversely estimate the Norton-Bailey creep parameters n, a and K for each stage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700