用户名: 密码: 验证码:
Complementary innate (anti-A-specific) IgM emerging from ontogenic O-GalNAc-transferase depletion: (Innate IgM complementarity residing in ancestral antigen completeness)
详细信息    查看全文
文摘
The murine and the human genome have global properties in common. So the murine anti-A-specific complementary IgM and related human innate isoagglutinin represent developmental, 2-mercaptoethanol-sensitive, complement-binding glycoproteins, which do not arise from any measurable environmentally-induced or auto- immune response. The murine anti-A certainly originates from a cell surface- or cell adhesion molecule, which in the course of germ cell development becomes devoid of O-GalNAc-transferase and is released into the circulation. In human sera the enzyme occurs exclusively in those of blood group A- and AB subjects, while in group O(H) an identically encoded protein lets expect an opposite function and appears in conjunction with a complementary anti-A reactive glycoprotein. Since O-glycosylations rule the carbohydrate metabolism in growth and reproduction processes, we propose that the ancestral histo-(blood)-group A molecule arises in the course of O-GalNAc-glycosylations of glycolipids and protein envelops at progenitor cell surfaces. Germ cell development postulates embryonic stem cell fidelity, which is characterised by persistent production of 伪-linked O-GalNAc-glycans. They are determined by the A-allele within the human, 鈥渃omplete鈥?histo (blood) group AB(O) structure that in early ontogeny is hypothesised to be synthesised independently from the final phenotype. The structure either passes 鈥渃ompletely鈥?through the germline, in transferase-secreting mature tissues becoming the 鈥渃omplete鈥?phenotype AB, or disappears in exhaustive glycotransferase depletion from the differentiating cell surfaces and leaves behind the 鈥渋ncomplete鈥?blood group O-phenotype, which has released a transferase- and O-glycan-depleted, complementary glycoprotein (IgM) into the circulation. The process implies, that in humans the different blood phenotypes evolve from a 鈥渃omplete鈥?AB(O) molecular complex in a distinct enzymatic and/or complement cascade suggesting O-glycanase involvements. While the murine and human oocyte zona pellucida express identical O-glycans, the human phenotype O might be explainable by the kinetics of the murine ovarian O-GalNAc glycan synthesis and the complementary anti-A released in parallel. The maturing murine ovary may provide insight into encoding of the physiologically superior 伪-linked GalNAc ancestral epitope that becomes essential in reproduction as well as in tissue renewal events. According to recent reports, O-GalNAc-transferase-determined blood group A suggests superiority in human female fertility and was called even 鈥減rotective鈥? So the minor fertility of blood-group-O females may reside in a critical timing in developmental shifting of enzyme functions affecting the formation of GalNAc-determined hormone receptors on the way to maturation. Experiments that had inserted an oocyte genome into a somatic one to generate pluripotent stem cells, might elucidate a developmental dilemma by testing oocytes from different blood group AB donors donors. Perhaps they will unmask the molecular basis of an evolutionary trend, while stem cell generation itself capitalises on the enzymatically-advantaged, lineage-maintaining (histo) blood group A-allele, which guaranties ancestral functional completeness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700