用户名: 密码: 验证码:
Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates
详细信息    查看全文
文摘
Mixed dry-water (DW) droplets and porous hydrogel (HYD) microspheres have been investigated for applications in reversible methane storage in the form of clathrates. The process of the methane hydrates formation in the presence of these particles was found to be complex. In this work, a modified shrinking-core model was used to simulate the process and to extract the diffusivity and the adsorption rate constant of methane based on the experimental data. The results indicated that the formation of methane hydrates in the mixed particulate systems was affected by water molecules from three different sources: the DW droplets, the HYD particles and the free water (FW) present in the system. The extracted value of initial methane diffusivity, Df0,DW (1.35脳10鈭?-0.99脳10鈭? m2/s) for DW droplets, and Df0,HYD (1.59脳10鈭?-5.24脳10鈭? m2/s) for HYD particles, are three orders of magnitude greater than that of bulk water (5脳10鈭?2 to 5脳10鈭?0 m2/s). The adsorption rate constant of methane, K鈦?/sup>HYD (0.55脳10鈭?-5.81脳10鈭? mol/m2 s MPa) of HYD particles, and K鈦?/sup>DW (5.49脳10鈭?-6.05脳10鈭? mol/m2 s MPa) of DW droplets, also are greater than the reported value of stirred bulk water (5.5脳10鈭?-6.5脳10鈭? mol/m2 s MPa). The K鈦?/sup>HYD is 10 times that of K鈦?/sup>DW when the hydrogel particles are saturated, indicating a favourable design of the scaffold for methane hydrates formation. The results also demonstrated a higher and more stable water conversion yield (90%) in HYD particles, echoing the improved hydrates formation kinetics and better reversibility. The compromised gas capacity in the mixed system was likely due to the presence of a relatively higher volume of FW, which should be prevented in the future design and development of scaffolding materials for clathrates formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700