用户名: 密码: 验证码:
Design, RNA cleavage and antiviral activity of new artificial ribonucleases derived from mono-, di- and tripeptides connected by linkers of different hydrophobicity
详细信息    查看全文
文摘
A novel series of metal-free artificial ribonucleases (aRNases) was designed, synthesized and assessed in terms of ribonuclease activity and ability to inactivate influenza virus WSN/A33/H1N1 in vitro. The compounds were built of two short peptide fragments, which include Lys, Ser, Arg, Glu and imidazole residues in various combinations, connected by linkers of different hydrophobicity (1,12-diaminododecane or 4,9-dioxa-1,12-diaminododecane). These compounds efficiently cleaved different RNA substrates under physiological conditions at rates three to five times higher than that of artificial ribonucleases described earlier and displayed RNase A-like cleavage specificity. aRNases with the hydrophobic 1,12-diaminododecane linker displayed ribonuclease activity 3–40 times higher than aRNases with the 4,9-dioxa-1,12-diaminododecane linker. The assumed mechanism of RNA cleavage was typical for natural ribonucleases, that is, general acid-base catalysis via the formation of acid/base pairs by functional groups of amino acids present in the aRNases; the pH profile of cleavage confirmed this mechanism. The most active aRNases under study exhibited high antiviral activity and entirely inactivated influenza virus A/WSN/33/(H1N1) after a short incubation period of viral suspension under physiological conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700