用户名: 密码: 验证码:
Metformin attenuates fluctuating glucose-induced endothelial dysfunction through enhancing GTPCH1-mediated eNOS recoupling and inhibiting NADPH oxidase
详细信息    查看全文
文摘
The aim of this study was to investigate whether and how metformin ameliorated endothelial dysfunction induced by fluctuating glucose (FG) in human umbilical vein endothelial cells (HUVECs).

Methods

HUVECs, which were exposed to FG to induce endothelial dysfunction, were incubated with nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine-methyl ester (l-NAME), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin, metformin and/or adenosine monophosphate-activated protein kinase (AMPK) inhibitor compound C. The oxidative stress and endothelial NOS (eNOS) coupling were evaluated.

Results

FG induced endothelial dysfunction as indicated by increased reactive oxygen species (ROS) generation and decreased nitric oxide (NO) production. Although FG increased eNOS phosphorylation, uncoupled eNOS was evidenced by downregulated guanosine 5′-triphosphate cyclohydrolase 1 (GTPCH1) and tetrahydrobiopterin (BH4) levels. FG also upregulated the level of p47-phox, a subunit of NADPH oxidase. Similar to l-NAME and apocynin, metformin ameliorated the FG-induced endothelial dysfunction by decreasing ROS generation. Furthermore, metformin recoupled eNOS through upregulating GTPCH1 and BH4 levels, and attenuated the upregulation of p47-phox in FG-treated HUVECs. Addition of compound C abolished the above effects of metformin.

Conclusion

Metformin improves the FG-induced endothelial dysfunction in HUVECs. The protective effect of metformin may be mediated through activation of GTPCH1-mediated eNOS recoupling and inhibition of NADPH oxidase via an AMPK-dependent pathway.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700