用户名: 密码: 验证码:
Vapor-liquid phase boundaries and swelling factors of C3H8-n-C4H10-CO2-heavy oil systems under reservoir conditions
详细信息    查看全文
文摘
Techniques have been developed to determine vapor-liquid phase boundaries and swelling factors of CO2-heavy oil systems and C3H8-n-C4H10-CO2-heavy oil systems under reservoir conditions. Experimentally, a pure substance of CO2 and a gas mixture consisting of 27.7 mol% C3H8, 23.9 mol% n-C4H10, and 48.4 mol% CO2 are respectively introduced to dilute the highly viscous heavy oil. A pressure-volume-temperature (PVT) setup is used to measure vapor-liquid phase boundaries (i.e., saturation pressures) and swelling factors at high pressures up to 11.1 MPa and elevated temperatures up to 373.35 K. Theoretically, the volume-translated Peng-Robinson equation of state (PR EOS) coupled with a recently modified alpha function is applied as the primary thermodynamic model to reproduce the experimental measurements. The heavy oil which is a complex mixture with unknown molecular structure is characterized as six pseudocomponents by using an exponential distribution splitting function and a logarithm-type lumping method. The optimal exponents in binary interaction parameter (BIP) correlations are obtained by best matching the measured saturation pressures. Subsequently, the comparisons have been performed between this work and a commercial simulator in terms of the overall prediction accuracy of saturation pressures for the quaternary C3H8-n-C4H10-CO2-heavy oil systems. It is found that the minimum absolute average relative deviation (AARD) of 6.7% is obtained by the methodology developed in this work, compared to the AARD of 35.6% obtained by running the commercial simulator.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700