用户名: 密码: 验证码:
SGPP: spatial Gaussian predictive process models for neuroimaging data
详细信息    查看全文
文摘
The aim of this paper is to develop a spatial Gaussian predictive process (SGPP) framework for accurately predicting neuroimaging data by using a set of covariates of interest, such as age and diagnostic status, and an existing neuroimaging data set. To achieve a better prediction, we not only delineate spatial association between neuroimaging data and covariates, but also explicitly model spatial dependence in neuroimaging data. The SGPP model uses a functional principal component model to capture medium-to-long-range (or global) spatial dependence, while SGPP uses a multivariate simultaneous autoregressive model to capture short-range (or local) spatial dependence as well as cross-correlations of different imaging modalities. We propose a three-stage estimation procedure to simultaneously estimate varying regression coefficients across voxels and the global and local spatial dependence structures. Furthermore, we develop a predictive method to use the spatial correlations as well as the cross-correlations by employing a cokriging technique, which can be useful for the imputation of missing imaging data. Simulation studies and real data analysis are used to evaluate the prediction accuracy of SGPP and show that SGPP significantly outperforms several competing methods, such as voxel-wise linear model, in prediction. Although we focus on the morphometric variation of lateral ventricle surfaces in a clinical study of neurodevelopment, it is expected that SGPP is applicable to other imaging modalities and features.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700